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Introduction
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* This presentation covers models for nonideal
reactors with a focus on residence time distribution
(RTD) and reactor flow behavior.
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Topics to be Addressed
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- Residence Time Distribution (RTD)
- Nonideal Flow Patterns

* - Models for Mixing

e - Calculation of Exit Conversion

* - Reactor Performance Assessment
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Objectives
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* - Understand the principles of nonideal flow In
reactors

* - Learn how to use RTD for analyzing reactor
performance

» - Apply mathematical models for mixing and
conversion calculation

- Compare different reactor modeling approaches
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Some Guidelines for Developing Models
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* The overall goal is to use the following equation
» RTD Data + Model + Kinetics = Predictions
* The model must be mathematically tractable
* The model must realistically describbe the characteristics of the non-ideal reactor
» The model should not have more than two adjustable parameters
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A PROCEDURE FOR CHOOSING A MODEL TO PREDIé@»‘f
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THE OUTLET CONCENTRATION AND CONVERSION st

1.

2.

Look at the reactor

A.

B.

C.

Where are the inlet and outlet streams to and from the reactors? (Is by-passing a
possibility?)

Look at the mixing system. How many impellers are there? (Could there be multiple mixing
zones in the reactor?)

Look at the configuration. (Is internal recirculation possible? Is the packing of the catalyst
particles loose so channeling could occur?)

Look at the tracer data

A.

B.

Plot the E(t) and F(t) curves.

Plot and analyze the shapes of the E(®) and F(®) curves. Is the shag?)e of the curve such that

the curve or parts of the curve can be fit by an ideal reactor model? Does the curve have a

Igng tail suggestmg a stagnant zone? Does the curve have an early spike indicating
Y[assing’

Calculate the mean residence time, tm, and variance, 2. How does the tm determined
from the RTD data compare with t as measured with a yardstick and flow meter? How large
is the variance:; is it larger or smaller than t2?

Choose a model or perhaps two or three models
Use the tracer data to determine the model parameters (e.g., n, D, V,,)

Use the CRE algorithm in Chapter 5. Calculate the exit concentrations and
conversion for the model system you have selected
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The RTD will be analyzed from a tracer pulse injected into the first reactor of three @MJI iy
equally sized CSTRs in series R

a) (b}

Generalizing this method to a series of n CSTRs gives the RTD for n CSTRs in series, E(Y):

"l —HT;
E(t) = =D e (18-4)
E®) = 1E(f) = %ﬂ]' ¢—® (18-5)
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Tanks-in-series response to a pulse tracer input for different numbers of tanks
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og =J OIE(®)de — 1 (18-8)
Ll
o2 =1 (18-9)
o M
14 n.=1n:1|‘,f-~:L
U
0al_n=2 |
Eley = [N
0.6 =]
oald Li TN
0ol / N
17
0

The number of tanks in series is
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!alcula!mg !onversmn for the @

T-I-S Model =

If the reaction is first order, we can use the equation below to calculate the conversion

U+ (5-15)

where
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|an!s-|n-!er|‘es versus Segregatio

for a First-Order Reaction st o s

Xtis :xnegzxmm <18_1 Q)

The molar flow rate of tracer (FT ) by both convection and dispersion is:

dC
Fr=|-D,SL+Ucr 4., (14-14)
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Figure 18-5 Dispersion in a tubular reactor. (Levenspiel, O., Chemical Reaction
Engineering, 2nd ed. Copyright © 1972 John Wiley & Sons, Inc. Reprinted by
permission of John Wiley & Sons, Inc. All rights reserved.)
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Figure 18-6 Symmetric concentration gradients causing the spreading by
dispersion of a pulse input.
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Flow, Reaction, and Dispersion
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dc C
D, dzz“—Udd;”A:“ (14-16)

Rearranging Equation (14-16) we obtain

Dadzch_d{:.ﬁ rﬁl_

Va2 a vl (18-15)

D,d*C, dC, kC,

Ta?2 & U (18-16)
by letting & = Cu/Cap and A = z/L

Ldy_db_ 5o 0 ]

Perd gy Da¥=0 (18-17)
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The quantity Da, appearing in Equation (18-17) is called the Damkdhler
number for a first-order conversion and physically represents the ratio
Rate of consumption of A by reaction
Da, = =k -
“ Rate of transport of A by convection T (18-18)
The other dimensionless term is the Peclet number, Pe,
Pe — Rate of transport by convection _u 181
" Rate of transport by diffusion or dispersion D, (18-19)
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Boundary Conditions

abal gl eays
D=0 | D3>0 { D=0 D>0 | D0 i D>0
: — T .
P N S : -
: :—---u- r}._,-.. '
[
; - S E - .
:;ﬁ rel =0 £=L
Mug Dispersion
Flow
{a) Closed-closed vessel (b) Open-open vessel
Atz=0
Fu(0r) = Fy(0r)
Substituting for F, yields

dC
UA.C,(07) = —A_D, [f] + UA.C,(0%)

z=0+
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Solving for the entering concentration C,(0-) = Cx
—-D,(dC,
Cpo=—2| =2 +Cu(0* 18-20
M= [ dz}z=n+ A(07) ( )

At the exit to the reaction section, the concentration is continuous, and there is no
gradient in tracer concentration.

Atz =L: Co(L™) = Co(LH)
c, _ (18-21)
dz
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Open-Open System

abal g ey
For an open-open system, there is continuity of flux at the boundaries at
Atz=0
F,(0-) = F,(0+)
—ﬂﬂﬁ) +UCK(0 ) = —D,,ﬁ) + UC(0") (18-29)
2 Je=0" 0z z=0"
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Figure 18-8 Schematic of Danckwerts boundary conditions: (a) entrance: (b) exit.

At z = L, we have continuity of concentration and

4Ca _ (18-23)
dz

COLLEGE OF ENGINEERING - dsssiml| a4l&



Closed System

We now shall solve the dispersion reaction balance for a first-order reaction

L dy_dys_
Pe,n? d\

Dapb =0 (18-17)

For the closed-closed system, the Danckwerts boundary conditions in dimensionless
form are

- __1db *
At A = 0 then 1 Pﬂrd}tl:uf + (0 ) (18-24)

Ath = lthenj—;{—l:[] (18-925)
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At the end of the reactor, where A = 1, the solution to the top equation is
C
b, =—2L=1-%
C.-d'ﬂ
_ 4gexp(Pe,/2)
(1+4)’ exp (Pe,q/2) — (1 —q)’ exp (— Pe,ql2) (18-20)
where g =, /1 + 4Da,/Pe,
Y=1— dgexp (Pe./2) (18-97)

(1+4q)° exp (Pe,q/2) — (1 —¢q)° exp (— Pe,q/2)
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Finding D, and the Peclet Number
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There are three ways we can use to find D, and hence P,

1. Laminar flow with radial and axial molecular diffusion theory
9. Correlations from the literature for pipes and packed beds
3. Experimental tracer data
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Laminar Flow -
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o= )=
ol

z=0 F J———.

ﬂc

3; {r}_ D, { ﬂ[r(&cfﬂr}]+ﬂlc} (18-98)
F

ar dzl
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1 R
C(z.1)= —J c(r, z, t)2mr dr (18-31) oo s
0

mR?

2
iT e 92T

+p9C

U T (18-32)
Where D* is the Aris-Taylor dispersion coefficient
L2R?
D*=D,n+ -
B 18 Drn (18-33)
That is, for laminar flow in a pipe
D,=Dr
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Correlations for D,
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100 Maodel only applicable when:
L == 3d, L == 30d, L == 300d,
Streamline flow I I
— in pipes _
10 /
D= B ]
ud, | For whole regime, _
2.2
1 — D*=D, .+ Ued =
192 Dyg 7 Dispersion
— by convection, 7
Dispersion by U2d?
— diffusion D =D, — D= 192D, .
0.1 I I | I I I I I I I
0.1 1 10~ 102 103 104
d, u Ud
(Re)(Sc) = 'Up e

K phys DO

Figure 18-10 Correlation for dispersion for streamline flow in pipes. (Levenspiel, O., Chemical
Reaction Engineering, 2nd ed. Copyright © 1972 John Wiley & Sons, Inc. Reprinted by
permission of John Wiley & Sons, Inc. All nghts reserved.) [Note: D = D,]
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I Flow in =
I pipes ]
| —
|
I
| =
I =
Il -
Il i
[
I —
[
i
= Experirmertal E
P .‘-:a? : Theeretieal, from Taylor 7
| (19545)
10 | R =
l =
L .
| B e —
|
< Streamling —| —— Turbulent —
ol L et TR R [ L
102 103 104 1ot 10%
Re = dlUpiu

Figure 18-11 Correlation for dispersion of fluids flowing in pipes. (Levenspiel, O., Chemical
Reaction Engineering, 2nd ed. Copyright © 1972 John Wiley & Sons, Inc. Reprinted by
COLLEGE permission of John Wiley & Sons, Inc. All rights reserved.) [Note: D = D]
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Dispersion in Packed Beds
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packed beds
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Re = d,Up/s

Lon 1000 2000

Figure 18-12 Expenmental findings on dispersion of fluids lowing with mean
axial velocity u in packed beds. (Levenspiel. O., Chemical Reaction Engineering,
2nd ed. Copyright © 1972 John Wiley & Sons, Inc. Reprinted by permission of John
Wiley & Sons, Inc. All nghts reserved.) [Note: D = D, ]
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Experimental Determination of D,
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3°Cy  AUC;) _aCy
D, 22 2 ot (18-13)
The Unsteady-State Tracer Balance
1 0% ab _ db (18-34)
Pe, a2 dx 00
Solution for a Closed-Closed System
In dimensionless form, the Danckwerts boundary conditions are
= —i@) + = CT(D_,:'} fd -
AtA=0: ( Pean 1=n++¢m ) Cr 1 (18-36)
Atd=1: b _ (18-37)
dk
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Figure 18-13 C-curves in closed vessels for various extents of back-mixing as
predicted by the dispersion model. (Levenspiel, O., Chemical Reaction Engineering,
2nd ed. Copynight © 1972 John Wiley & Sons, Inc. Reprinted by permission of John
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Wiley & Sons, Inc. All rights reserved.) [Note: D = D]
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For long tubbes (Per > 100) in which the concentration gradient at + « will be zer
solution to the Unsteady-State Tracer balance at the exit is'’

euwllen»b
CCAL 1 —(1-8)
(1,8) = = exp [—} 18-44
v Cro  2,/w@®/Pe, 46/ Pe, (

The mean residence time for an open-open system is

(1.2 ]

— [1 +Pe,}’ (18-45)
ol 2 &
2 Pe P& (18-46)
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W@ previous equations to determin

system parameters:
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Case 1. The space time 1 is known. That is, V and v, are measured independently. Here,
we can determine the Peclet number by determining t., and ¢ from the

concentration-time data and then use Equation (18-46) to calculate P,,. We
can also calculate t,, and then use Equation (18-45) as a check, but this is usually
less accurate.
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Case 2. The space time t is unknown. This situation arises when there are dead or
stagnant pockets that exist in the reactor along with the dispersion effects. To analyze
this situation, we first calculate mean residence time, t., and the variance, %, from the
data as in case 1. Then, we use Equation (18-45) to eliminate 12 from Equation (18-
46)to  arrive at

2Pe +8
Pel +4Pe +4 (18-47)

o’
fo

We now can solve for the Peclet number in terms of our experimentally
determined variables 62 and t, . Knowing P, we can solve Equation (18-45) for ,
and hence V. The dead volume is the difference between the measured volume
(i.e., with a yardstick) and the effective volume calculated from the RTD.
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Two-Parameter Models—ModeIiné%;;;g
Real Reactors with Combinations ofi=-
|deal Reactors

Real CSTR Modeled Using Bypassing and Dead Space
IL‘ﬁ.C! m e
S

L'I'::I /

UE
Cas
T3 Dead zone Ca
| LR )
Cﬁﬂ o Up=up Ty
(o)
(b)

Figure 18-14 (a) Real system: (b) model system.
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Solving the Model System for C, and X
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We shall calculate the conversion for this model for the first-order reaction
A——>B

The bypass stream and effluent stream from the reaction volume are mixed at the
junction point 2. From a balance on species A around this point

[IN]=[Out]
[CagVo + CoaVeI=[Ca (ViptVy)] (18-57)
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Let a= V. /V and B=v,/V,, then

bl ¢l iyl
C.n"l = BEA.'D + (1 _ B}CA; (18—58) YOUR WAY TC SUCLESS
For a first-order reaction, a mole balance on V, gives
U,Cpp — U, Cpas — kCy,V, =0 (18-59)
or, in terms of a.and 8
Cao(1 —Bluyg (18-60)

AT 1= By + ek

Substituting Equation (18-60) into (18-58) gives the effluent concentration of species
A

Ca _ iy _y_ (1—-B) i
Cyro b= B+(1—B]+mk (18-61)
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Using a Tracer to Determine the ‘&’

Model Parameters in a CSTR-with- ===
Dead-Space-and-Bypass Model

‘1o, m vs = (1-Blz,

v . L
Vg=(1-a)V
Eb= BED | =
V, = oV
‘ET‘E

- - C_I_
CTD ll\_g../ Ul:l = -[:'h 4 LIE
Figure 18-15 Model system: CSTR with dead volume and bypassing.
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dNy, _, dCy,

7 s (18-62)

U.rcm — Uy ET::

The conditions for the positive-step input are

Att<0,C =0

A balance around junction point 2 gives

_ U Crg + O, U,

Cr
Uy

(18-63)
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As before alasl @] sy
V.=alV
v, = Buv
V
T=—
Vg

Integrating Equation (18-62) and substituting in terms of a and 3

T—

o 1-B( (18-64)
- o-n] 2

T

Combining Equations (18-63) and (18-64), the effluent tracer concentration is

Cre . 1Bt
Cro 1 EKP[ o (Tﬂ (18-65)
Cro _, 1 1-B|t
lnCm—CT lnl_B'I-[ - ]1 (18-66)
COLLEGE OF ENGINEERIN ——— —
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Other Models
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QG%O
|
J—J

= | | S
< v, 8
@ o
M e Yo - Cpy

(a) (b)
Figure 18-16 (a) Real reaction system; (b) model reaction system.
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*Solving the Mode! System for C, {1
and X Sh
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Let B represent that fraction of the total flow that is exchanged between reactors 1 and
Q. that is,

v, = Buy

and let a represent that fraction of the total volume, V, occupied by the highly agitated

region:
F| =alV
Then
Vy=(1—a)V
The space time is
=r
U

COLLEGE OF ENGINEERING - dsssyml| 8414
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_ Chﬂ
1+B+oatk—{BY[B+ (1 —a)tk]} (18-67)

CAI

and

Cal _ (Btamb)IB+(1 —a)tk] - B2

* = I_CM (1+B+ath)[B+(l —a)tk]—p?

(18-68)
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Using a Tracer to Determine the ‘&’

Model Parameters in a CSTR with afn~--
Exchange Volume

The problem nowrls to evaluate the parameters o and B using the RTD data. A mole
balance on a tracer pulse injected at t = 0 for each of the tanks is

Accumulation = Rate in - Rate out

dC

Reactor 1: V) d;' =11Crp —(UeCr +1v1Cry) (18-67)
dC

Reactor 2: V, d: =v,Cq —v,Cpy (18-68)
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dC

[i] _ [a:n"i"tl+E~-I—l}ﬁ"‘r:m—{r:lurir:lz-l-|E!+l]a.'zi'"'"rJrT (18-73)
pulse

Crig a(m —my)

where

| l—a+B || _ ;L [ _4aB(l—a)
ml’mz_{lu{l—u}}{ I_Jl [I—I:H-BI}}
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Roal Systom Model System

o 3
W\ 4(:'{} IIU
|—|- UD—I- L:IEI
1 ]
M"}I ( _ﬂ':“l}['ll =)V

E(e) Fle)

wp  (1—e)(1-B) B af  (1—a)(1—p) @

Combinations of ideal reactors used to model real tubular reactors: two ideal PFRs In
parallel

COLLEGE OF ENGINEERING - dsssiml| a4l

Tikrit University - cu)$5 asola ‘



—@

abal gl eays
Real Systam Model System
& Un
PN 4.0 oV
TPy, ’
El8) Flg)
\ 1o
ol ] o B

Combinations of ideal reactors used to model real tubular reactors: ideal PFR and ideal
CSTR in parallel
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Summary

1. The models for predicting conversion from RTD data are:
A. Zero adjustable parameters
I.  Segregation model
li.  Maximum mixedness model
B. One adjustable parameter
I.  Tanks-in-series model
li. Dispersion model
C. Two adjustable parameters: real reactor modeled as combinations of ideal
reactors
9. Tanks-in-series model: Use RTD data to estimate the number of tanks in series,

bl gl sagla
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(518-1)

n=¥
a2
For a first-order reaction

!
(1+1.k)n
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3. Dispersion model: For a first-order reaction, use the Danckwerts boundary ., g saym

conditions R
Y—1— 4q exp(Pe,/2)
~ (1+gq)? exp(Pe,q/2)— (1 —q)* exp(—Pe,q/2) (518-2)
where
g= [1+224 (518-3)
Pe,

Da, = tk (518-4)

For a first-order reaction

UL _ Ud,

Fer = D, Fer = Db (S18-5)
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4.  Determine Da Youm way € Succrss
A  For laminar flow, the dispersion coefficient is
2
D+ = D,y + PR (S18-6)
48D, p

B  Correlations. Use Figures 18-10 through 18-12.

C  Experiment in RTD analysis to find t,, and .
For a closed-closed system, use Equation (518-6) to calculate Per from the RTD

data
o 2
2 Fe PEE ] (S18-7)
For an open-open system, use
2
N . (18-47)

o
., Pe+4Pe +4
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5. Ifareal reactor is modeled as a combination of ideal reactors, the model shoglgl o i

have at most two arameters YOUR WY TC SUCCESS
Uo Us
_Y
L “_—-H
Vi
Vs
S
Th
*=Tp
CSTR with bypass Two CSTHs with
and dead volume interchange
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6. The RTD is used to extract model parameters.

Comparison of conversions for a PFR and CSTR with the zero-parameter and hazsh =as=
parameter models. X, symbolizes the conversion obtained from the
segregation model and X_., is that from the maxi-mum

mixedness model for reaction orders greater than one.

~

Xppr =X oy = X pm = X csR
with X

Xppr =X 1 <Xestr OF X g = Xestr

maodel maode

Cautions: For rate laws with unusual concentration functionalities or for
nonisothermal operation, these bounds may not be accurate for certain types of
rate laws.
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* This presentation discussed nonideal reactor flow,
RTD, and the application of models for reactor
design and performance assessment.
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